
Modelling Human-like Behavior through
Reward-based Approach in a First-Person

Shooter Game

Research Head: Ilya Makarov

Project participants: Peter Zyuzin, Pavel
Polyakov,Ivan Guschenko-Cheverda,
Maxim Uriev, et. all.

Content

● First-Person Shooter
● Game AI

● Weapon Selection
● Path Planning
● Path Finding

First-Person Shooter Video Game

A first-person shooter game is a special genre of video games simulating
combat actions with projectile-based weapons through an eyes
perspective of human-like model placed in virtual world.

At the round start each player is assigned to one of competing teams and
all the players of one team are spawned at their team base location with
starting weapon combination and full health.

In what follows player can move and use weapon in order to survive or kill
enemies.

AI in FPS Games
Computer models addressing intelligence tests have different purposes and
applications:

● to advance AI by the use of challenging problems,
● to use them for the evaluation of AI systems,
● to better understand measures of intelligence,
● to better understand what human intelligence is.

The main criterion to verify the quality of a game AI is the level of compliance for
non-playable characters’ (NPCs) actions to distinguish computer-controlled and
human players by human judges through Alan Turing test for game BOTs.

Weapon Selection using FALCON

FALCON –
Fusion
Architecture for
Learning,
COgnition and
Navigation.

Figure 1. FALCON Architecture

Wang, D., Subagdja, B., Tan, A., Ng, G.: Creating Human-like Autonomous Players in Real-time
First Person Shooter Computer Games. In: Proc. IAAAI 2009 (2009)

Weapon selection with FALCON
● States:

– normalized distance between the BOT and its enemy;

– absolute value of projection of enemy’s velocity vector onto plane that is normal to BOT's
aiming vector.

● Actions - use: machine-gun or shotgun or sniper rifle.
● Reward: ᬏ = (a + b ∗ ᬂᬆᬐᬑ᫿ᬋᬁᬃ) ∗ ᬂ᫿ᬊ᫿ᬅᬃ (we find optimal a = 1, b = 9)

 ᬂᬆᬐᬑ᫿ᬋᬁᬃ - normalized distance between the BOT and the enemy;

 ᬂ᫿ᬊ᫿ᬅᬃ - normalized value of damage that the BOT inflicts to the enemy.

Modified FALCON

● We delete a neuron if count of successful usages of this neuron
exceeds count of unsuccessful usages of the neuron;

● We delete a neuron if its activity lead to receiving zero reward several
times in a row;

● We restrict the size of the cognitive field. If it is overcrowded with
neurons we delete a half of neurons with minimal value of expected
reward.

FALCON Experiment Results

Table 1, 2. Results of FALCON and Modified FALCON Learning

Path Planning
Path planning and path nding problems play one of the main topics in robotic and
automation elds, especially for dynamically changing environments.

Voronoi diagrams are the simplest case of a k-nearest neighbors classification rule
for points { } with k=1.

In game programming, Voronoi diagrams are used to make a partition of a
navigation mesh to find a collision free path in both global and local environments.

The path is a piecewise linear path or a curve smoothed with the help of
● Splines through way points on map,
● Composite Bezier curves based on avoiding obstacles.

Map Tactical Properties and Penalties for Smoothing
Navigation consists of the following steps:
1. BOT makes a query to navigation system;
2. Navigation system uses I-ARA* algorithm finding a

sequence of adjacent polygons on navigation mesh;
3. A sequence of polygons is converted into a sequence

of randomly chosen points on a common edge;
4. BOT receives a sequence of points and build a

collision free path to walk.

List of Penalties for Path Planning:
GetPenaltyForRotation();
GetPenaltyMultiplierForCrouch();
GetPenaltyForJump();
GetAdditionalPenalty(PreviousPolygon,NextPolygon);

Figure 3. Tactical NavMesh.

General Penalties:
BaseCost();
BaseEnterCost();
NoPathFlag();
Visibility();

Experiments on Path Planning
We take 1000 different start and end locations on the map shown on Figure 4. The
average difference (AD, %) and variance of difference (VD, %) from the shortest
path length for the next paths were calculated during the experiment:

1. Piecewise path with visibility penalty set to 0;
2. Piecewise path with visibility penalty set to10;
3. Smoothed path with visibility penalty set to 0;
4. Smoothed path with visibility penalty set to 10.

Table 1. Comparison with the Shortest Path Length

I-ARA* Search Algorithm
Moving-target search, where a hunter has to catch a moving target, is an important problem
for video game developers.

A* path planning algorithm cannot always guarantee the continuity of a player’s
movements when the allocated time is limited.

Anytime Repairing A*(ARA*) can get a sub-optimal solution quickly, and then work on
improving the solution until the allocated time expires.

f(s)=g(s)+eps×h(s, t), s - path, g(s) - current shortest path length from start,
 h(s,t) - estimated cost of reaching target t from s, eps - weight of repair iteration

Incremental ARA* decreases search time even without anytime condition compared to
repeated A* .

Decreasing Time for Long Distances Path Planning
The main idea is to walk a certain percentage of suboptimal path without
calculations of repeated ARA*.

● Positive effects: significant decreasing of time for calculations. Difference in
paths’ length is less than 10% for dense mazes.

● Negative effects: new iterations have longer durations for some positions.
Lack of anytime property in a new algorithm.

I-ARA* Comparison
We examined original I-ARA* and our algorithm for mazes of sizes 300x300 and
600x600 with different sparseness and percentage (p), and compared overall
search times and path lengths.

Table 3. Time decreasing, %

I-ARA* Comparison

 Table 4. Path length increasing, %

Thank you!

E-mail: iamakarov@hse.ru

mailto:iamakarov@hse.ru

