Formal solution of $\hbar-$ KP hierarchy

Sergey Natanzon (joint with Anton Zabrodin)

9 июня 2018 г.

Tau-function

Hereafter we work with the $\hbar-$ KP hierarchy from K. Takasaki and T. Takebe, Integrable hierarchies and dispersionless limit, Rev. Math.Phys. 7 (1995) 743-808. Tau-function of the hierarchy is a function $\tau=\tau(\mathbf{t})$ depended on the infinite set of time variables $\mathbf{t}=\{t_1,t_2,\ldots\}$. There is also contains \hbar as a parameter but we will not write it explicitly. Below we use the notation

$$\tau^{[z_1,\ldots,z_m]}(\mathbf{t})=e^{\hbar(D(z_1)+\ldots+D(z_m))}\,\tau,$$

where

$$D(z) = \sum_{k>1} \frac{z^{-k}}{k} \, \partial_k; \quad \partial_k = \partial/\partial t_k. \tag{1}$$

Hirota relation

Let $\hbar>0$. A function τ is called τ -function of $\hbar-$ KP hierarchy if it satisfies $\hbar-$ Hirota functional relation.

$$(z_1-z_2)\tau^{[z_1,z_2]}\tau^{[z_3]}+(z_2-z_3)\tau^{[z_2,z_3]}\tau^{[z_1]}+(z_3-z_1)\tau^{[z_3,z_1]}\tau^{[z_2]}=0. \quad (2)$$

For $\hbar=1$ it gives the ordinary Hirota relation.

Theorem

1. A function au is au-function of \hbar - KP hierarchy if and only if

$$\hbar \partial_1 \log \frac{\tau^{[z_1]}}{\tau^{[z_2]}} = (z_2 - z_1) \left(\frac{\tau^{[z_1, z_2]} \tau}{\tau^{[z_1]} \tau^{[z_2]}} - 1 \right).$$
 (3)

2. A function au is au-function of $\hbar-$ KP hierarchy if and only if

$$\prod_{1 \le i \le j \le m} (z_j - z_i) \cdot \tau^{[z_1, \dots, z_m]} \tau^{m-1} = \det_{1 \le j, k \le m} ((z_j - \hbar \partial_1)^{k-1} \tau^{[z_j]})$$
(4)

for any $m \geq 2$ and any z_1, \ldots, z_m .

Schur polynomials

For description of τ -function we use Schur polynomials. An elementary Schur polynomial $h_k(\mathbf{t})$ depends from natural number k and infinite number of variable $\mathbf{t}=(t_1,t_2,\ldots)$. It is defined by the generating series

$$\exp(\sum_{k\geq 1} t_k z^k) = \sum_{k\geq 0} h_k(\mathbf{t}) z^k.$$

An general Schur polynomial $s_{\lambda}(t)$ depends from a Young diagram $\lambda = [\lambda_1, \lambda_2, \dots, \lambda_\ell]$ of degree $|\lambda| = \lambda_1 + \lambda_2 + \dots + \lambda_\ell$ with a $\ell = \ell(\lambda) \geq 0$ rows of positive lengths $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_\ell > 0$.

The general Schur polynomial is the determinant

$$s_{\lambda}(\mathbf{t}) = \det_{i,j=1,\dots,\ell(\lambda)} h_{\lambda_i - i + j}(\mathbf{t}).$$

Formal tau-function

Let us introduce the differential operator

$$\partial_{k}^{\hbar} = \sum_{l=1}^{k} \frac{\hbar^{l-1}k}{l!} \sum_{\substack{k_{1}, \dots, k_{l} \geq 1 \\ k_{1}+\dots+k_{l}=k}} \frac{\partial_{k_{1}} \dots \partial_{k_{l}}}{k_{1} \dots k_{l}} = \partial_{k} + \hbar \sum_{l=1}^{k-1} \frac{k\partial_{l}\partial_{k-l}}{2l(k-l)} + O(\hbar^{2}). \quad (5)$$

In the KP theory the first variable t_1 is distinguished. Thus we will consider τ -function as evolution from a function $\tau(x,0)$ of one variable by \hbar - KP flows

$$\tau(x,0) \to \tau(x,\mathbf{t}) = f(x)\hat{\tau}(x+t_1,t_2,t_3,\dots).$$

A formal τ -function of \hbar - KP hierarchy we mean a formal series for a function $\tau(x,\mathbf{t})$ of this type, that satisfy the Hirota equation by \mathbf{t} for any x.

Our first goal is to find one-to-one correspondance between the set of all systems of differentiable functions $c_k(x), k=0,1,2,\ldots$ and the set of all formal τ -functions of \hbar - KP hierarchy.

Formal solutions au-function of \hbar - KP hierarchy

Theorem

Let $\hbar \neq 0$ and $c_k(x)$, k = 0, 1, 2, ..., be arbitrary infinitely differentiable functions of x (with $c_0(x)$ being not identically 0). Put $c_0(x) = c_0(x)$ and

$$c_{\lambda}(x) = (c_{0}(x))^{1-\ell(\lambda)} \det_{1 \leq i,j \leq \ell(\lambda)} \left[\sum_{k=0}^{j-1} (-\hbar)^{k} C_{j-1}^{k} \partial_{x}^{k} c_{\lambda_{i}-i+j-k}(x) \right]$$
 (6)

for Young diagram $\lambda \neq \emptyset$. Then the series

$$\tau(x;\mathbf{t}) = \sum_{\lambda} c_{\lambda}(x) s_{\lambda}(\mathbf{t}/\hbar) \tag{7}$$

is a formal solution to the \hbar -KP hierarchy ($\hbar \neq 0$) where

$$\tau(x; \mathbf{0}) = c_0(x), \quad \partial_k^{\hbar} \tau(x; \mathbf{t}) \Big|_{\mathbf{t}=0} = \frac{k}{\hbar} c_k(x), \quad k \ge 1$$

and $c_1 = \partial_x c_0 - c_0 \partial_x \log f$.

Theorem

Let $\tau(x, \mathbf{t}) = f(x)\hat{\tau}(x + t_1, t_2, ...)$ be a tau-function of the \hbar -KP hierarchy with respect to the variables t_j , with $\tau(x, \mathbf{0})$ being an infinitely differentiable function of x. Then it has a representation by Young diagrams

$$\tau(x;\mathbf{t}) = \sum_{\lambda} c_{\lambda}(x) s_{\lambda}(\mathbf{t}/\hbar), \tag{8}$$

where the coefficients are connected by the relations

$$c_{\lambda}(x) = (c_{0}(x))^{1-\ell(\lambda)} \det_{1 \leq i, j \leq \ell(\lambda)} \left[\sum_{k=0}^{j-1} (-\hbar)^{k} C_{j-1}^{k} \partial_{x}^{k} c_{[\lambda_{i}-i+j-k]}(x) \right]$$
(9)

for $\lambda \neq \emptyset$, $c_{\emptyset}(x) = c_{0}(x)$ and $c_{1} = \partial_{x}c_{0} - c_{0}\partial_{x}\log f$.

\hbar - KP hierarchy

For many applications in physics and mathematics one needs to deal with logarithm of the tau-function rather than with the tau-function itself. Let us put

$$F(x; \mathbf{t}) = \hbar^2 \log \tau(x; \mathbf{t}). \tag{10}$$

Then the Hirota equations on $\tau(x; \mathbf{t})$ go to \hbar - KP hierarchy on $F(x; \mathbf{t})$.

That is

$$e^{\Delta(z_1)\Delta(z_2)F} = 1 - \frac{\Delta(z_1)\partial_x F - \Delta(z_2)\partial_x F}{z_1 - z_2}, \qquad (11)$$

where

$$\Delta(z) = \frac{e^{\hbar D(z)} - 1}{\hbar} \,. \tag{12}$$

For $\hbar = 1$ this is the ordinary KP hierarchy.

For $\hbar = 0$ this is the dispersionless KP hierarchy.

Our goal is a formula, expressing any solution of \hbar - KP hierarchy by Cauchy-like data $f_k(x) = \partial_k^{\hbar} F(x; t_1, t_2, \ldots) \Big|_{t=0}$.

The \hbar -KP hierarchy in terms of ∂_k^\hbar

Define some combinatorial constants $\tilde{P}_{ij}(s_1,\ldots,s_m)$ as the number of sequences of positive integers (i_1,\ldots,i_m) and (j_1,\ldots,j_m) such that $i_1+\ldots+i_m=i$, $j_1+\ldots+j_m=j$ and $s_k=i_k+j_k-1$. Put

$$P_{ij}(s_1,\ldots,s_m)=\frac{(-1)^{m+1}ij}{m\,s_1\ldots s_m}\,\tilde{P}_{ij}(s_1,\ldots,s_m).$$

<u>Theorem</u>

The \hbar -KP hierarchy is equivalent to the system of equations

$$\partial_{i}^{\hbar}\partial_{j}^{\hbar}F = \sum_{\substack{m \geq 1 \\ s_{1}+\ldots+s_{m}=i+j-m}} P_{ij}(s_{1},\ldots,s_{m}) \partial_{s_{1}}^{\hbar}F \ldots \partial_{s_{m}}^{\hbar}F, \qquad (13)$$

for the function F = F(x; t), where $\partial = \partial_1$.

Combinatorial constants

Let $K_I(I^1, \ldots, I^r)$ be the number of partitions of a set of I elements into ordered groups of $I^1, \ldots, I^r > 0$ elements.

Define the constants $P_{i_1...i_k}^{\hbar}$ $\binom{s_1...s_m}{l_1...l_m}$ from integer positive $m, \{i_r\}, \{s_r\}, \{l_r\}$ by the following recurrence relations:

1)
$$P_{i_1,i_2}^{\hbar} \begin{pmatrix} s_1 \dots s_m \\ 1 \dots 1 \end{pmatrix} = P_{i_1 i_2}(s_1, \dots, s_m)$$
 and $P_{i_1,i_2}^{\hbar} \begin{pmatrix} s_1 \dots s_m \\ l_1 \dots l_m \end{pmatrix} = 0$, if $\prod_{j=1}^m l_j > 1$.

2)
$$P_{i_1...i_r}^{\hbar} \begin{pmatrix} x_1 \dots x_V \\ y_1 \dots y_V \end{pmatrix} = \sum_{i_1...i_{r-1}}^{\hbar} \begin{pmatrix} s_1 \dots s_m \\ l_1 \dots l_m \end{pmatrix} \frac{\hbar^{\nu(k_1...,k_m)-1}i_r}{[k_1...k_m]} \times K_{l_1}(l_1^1,\dots,l_1^{n_1})P_{s_1k_1}(s_1^1\dots s_{n_1}^1)\dots K_{l_m}(l_m^1,\dots,l_m^{n_m})P_{s_mk_m}(s_1^m\dots s_{n_m}^m),$$
 where $\nu(k_1,\dots,k_n)$ is the number of positive numbers between k_i and $[k_1,\dots,k_n)] = \prod_{i=1}^n \max\{k_i,1\}.$

The summation is carried over all sets of integer numbers such that

$$(x_1 \dots x_v) = (s_1^1, \dots s_{n_1}^1, s_1^2, \dots, s_{n_2}^2, \dots, s_1^m, \dots, s_{n_m}^m), \quad s_i = \sum_{j=1}^{n_i} s_j^i,$$

$$(y_1 \dots y_v) = (l_1^1 + 1, \dots, l_{n_1}^1 + 1, l_1^2 + 1, \dots, l_{n_2}^2 + 1, \dots, l_1^m + 1, \dots, l_{n_m}^m + 1),$$

$$l_i = \sum_{j=1}^{n_i} l_j^i, \sum_{i=1}^m (s_i + l_i) = \sum_{j=1}^{r-1} i_j, \quad \sum_{i=1}^m k_i = i_r, \quad \sum_{i=1}^{n_j} s_i^j = k_j + s_j.$$

Theorem

The \hbar -KP hierarchy is equivalent to the system of equations for $r \geq 2$

$$\partial_{i_{1}}^{\hbar} \dots \partial_{i_{r}}^{\hbar} F = \sum_{\substack{m \geq 1 \\ s_{1} + l_{1} + \dots + s_{m} + l_{m} \\ s_{1} + \dots + l_{r} \\ 1 \leq s_{i}; 1 \leq l_{i} \leq r - 1}} P_{i_{1} \dots i_{r}}^{\hbar} \begin{pmatrix} s_{1} \dots s_{m} \\ l_{1} \dots l_{m} \end{pmatrix} \partial^{l_{1}} \partial_{s_{1}}^{\hbar} F \dots \partial^{l_{m}} \partial_{s_{m}}^{\hbar} F$$

$$(14)$$

Variables t_λ^\hbar , corresponding to ∂_λ^\hbar

A Young diagram $\lambda = [\lambda_1, \lambda_2, \dots, \lambda_\ell]$ is described by $\lambda = (1^{r_1} 2^{r_2} \dots n^{r_n} \dots)$, where $r_i = card\{j | \lambda_j = i\}$. Denote by $\rho(\lambda) = \lambda_1 \lambda_2 \dots \lambda_\ell$ and $\sigma(\lambda) = \prod_{n \geq 1} r_n!$. We put also $\partial_\lambda^\hbar = \partial_{\lambda_1}^\hbar \partial_{\lambda_2}^\hbar, \dots, \partial_{\lambda_\ell}^\hbar$.

Let us consider the basis

$$m_{\lambda}(x_1, x_2, \ldots, x_n) = \frac{1}{(n - \ell(\lambda))! \, \sigma(\lambda)} \sum_{s \in S_n} x_1^{\lambda_{s(1)}} x_2^{\lambda_{s(2)}} \ldots x_n^{\lambda_{s(n)}}$$

in the space of symmetrical polynomials from x_1, x_2, \ldots

These polynomials are linear combinations from symmetrical polynomials $t_k = \frac{1}{k} \sum_i x_i^k$. This gives new polynomials $m_{\lambda}(\mathbf{t})$ from $\mathbf{t} = (t_1, t_2, \dots)$. The first few functions m_{λ} are:

$$m_{(1)}(\mathbf{t})=t_1,$$

$$m_{(2)}(\mathbf{t}) = 2t_2, \quad m_{(1^2)}(\mathbf{t}) = \frac{1}{2}t_1^2 - t_2,$$

$$m_{(3)}(\mathbf{t}) = 3t_3, \quad m_{(12)}(\mathbf{t}) = 2t_2t_1 - 3t_3, \quad m_{(1^3)}(\mathbf{t}) = \frac{1}{6}t_1^3 - t_2t_1 + t_3.$$

Let us put

$$t_{\lambda}^{\hbar} := \frac{\sigma(\lambda)}{\rho(\lambda)} \, \hbar^{\ell(\lambda)} m_{\lambda}(\mathbf{t}/\hbar). \tag{16}$$

The first few are (see (15)):

$$t_{(1)}^{\hbar} = t_1,$$
 $t_{(2)}^{\hbar} = t_2, \quad t_{(1^2)}^{\hbar} = t_1^2 - 2\hbar t_2,$
 $t_{(2)}^{\hbar} = t_2, \quad t_{(1^2)}^{\hbar} = t_3 t_4, \quad t_{(1^2)}^{\hbar} = t_3 t_5, \quad t_{$

$$t_{(3)}^{\hbar}=t_3, \quad t_{(21)}^{\hbar}=t_2t_1-\frac{3}{2}\hbar t_3, \quad t_{(1^3)}^{\hbar}=t_1^3-6\hbar t_2t_1+6\hbar^2t_3.$$

Theorem

Any formal series $F(t) = F(t_1, t_2, ...)$ has a representation in form of formal series

$$F(t) = \sum_{\lambda} \partial_{\lambda}^{\hbar} F(t') \Big|_{\mathbf{t}'=0} \frac{t_{\lambda}^{\hbar}}{\sigma(\lambda)}, \qquad (18)$$

Construction of formal solutions

Consider now any family of infinitely differentiable functions

$$f_{[k]}^{\hbar}(x) = f_k^{\hbar}(x) \quad (k = 1, 2, ...).$$

For other Young diagrams λ we put

$$f_{\lambda}^{\hbar}(x) = \sum_{m \geq 1} \sum_{\substack{s_1 + l_1 + \dots + s_m + l_m = |\lambda| \\ 1 \leq s_i; \ 1 \leq l_i \leq \ell(\lambda) - 1}} P_{\lambda}^{\hbar} \begin{pmatrix} s_1 \dots s_m \\ l_1 \dots l_m \end{pmatrix} \partial^{l_1} f_{s_1}(x) \dots \partial^{l_m} f_{s_m}(x),$$

$$(19)$$

where

$$P_{\lambda}^{\hbar}\left(\begin{array}{c} s_{1}\ldots s_{m} \\ l_{1}\ldots l_{m} \end{array}\right) = P_{\lambda_{1}\ldots\lambda_{r}}^{\hbar}\left(\begin{array}{c} s_{1}\ldots s_{m} \\ l_{1}\ldots l_{m} \end{array}\right)$$

for $\lambda = [\lambda_1, \dots, \lambda_\ell]$.

Theorem

For any \hbar and any family of smooth or formal functions

$$\mathbf{f} = \{f_0(x), f_1(x), f_2(x), \ldots\}$$

there exists a unique solution $F(x; \mathbf{t})$ of the \hbar -KP hierarchy such that

$$F(x; \mathbf{0}) = f_0(x)$$
 and $\partial_k^{\hbar} F(x; t_1, t_2, ...) \Big|_{t=0} = f_k(x)$.

This solution has the form

$$F(x; \mathbf{t}) = f_0(x) + \sum_{|\lambda| \ge 1} \frac{f_{\lambda}^{\hbar}(x)}{\sigma(\lambda)} t_{\lambda}^{\hbar}.$$
 (20)