Хамдамов Т.В.1

НИУ ВШЭ, Москва

Роль компьютерных симуляций в методологии современных экономических исследований

Введение

Если внимательно проследить эволюцию использования компьютерных симуляций в арсенале исследовательских инструментов экономистов, то оказывается, что это обычно приводит к изменению самой исследовательской методологии, а иногда и отходу от принятых в академической среде экономических теорий.

В этом докладе будет рассмотрено две ключевые проблемы:

- 1) междисциплинарное взаимодействие на уровне переноса инструментов и даже отдельных научных картин из одной дисциплины в другую: в данном случае, от физики к экономике;
- 2) смена традиционной научной картины мира посредством накопленных в критическом количестве экспериментальных данных и гипотез в результате применения новых прикладных методов исследований: в данном случае, влияние компьютерных симуляций на классические экономические теории и аксиоматические подходы.

Прикладной целью исследования станет разработка гибридной симуляции (интеграция системной динамики с агент-ориентированным моделированием) на примере экономики макрорегиона (Российская Федерация).

Краткий обзор заимствования экономистами метода симуляций у физиков

Парадокс появления симуляций в практике научных исследований заключался в том, что такие методы разрабатывались учеными, которые были тесно связаны с экономической наукой. Но как показало время, широкое признание симуляций в кругу экономистов произошло спустя почти четыре десятилетия, в то время как их успешное применение в естественнонаучных, инженерных и точных научных дисциплинах фиксируется с самого начала появления таких практик — примерно 1940-е гг. Причина этого кроется в продолжавшемся в те годы проекте аксиоматизации - экономика сконцентрировалась над теоремами и доказательствами маржиналистского характера. Доминирующее положение экономической мысли занимали исследования существования и стабильности равновесий.

Так получилось, что, хотя с одной стороны, Винер (через системную динамику) и фон Нейман (теория клеточных автоматов) внесли свой вклад в развитие симуляций, с другой стороны, они никогда не применяли эту методологию непосредственно в своих

¹ Контактная информация: Хамдамов Т.В., 101000, г. Москва, ул. Мясницкая, д. 20, email: tkhamdamov@hse.ru, khamdamov.timur@gmail.com

экономических изысканиях. Нейману и Винеру пришлось изменить язык, чтобы их понимали коллеги-экономисты. Даже сегодня, современные экономисты-неоклассики несмотря на то, что применяют в своих теориях кибернетические взгляды на информационные потоки, так и не смогли принять методологию Форрестера (ученик Винера) для исследований, отдав предпочтение традиционному математическому моделированию.

Наследие фон Неймана было подхвачено неортодоксальными экономистами, которые в своих исследованиях используют агент-ориентированное моделирование, и тем самым противопоставляют свои методики классическим аксиоматическим подходам. Агентсобирает ориентированная экономика различные примеры неудовлетворенности теоретическими построениями и моделированием в классической экономике и предлагает симуляции как естественный способ подхода к социальным наукам. С теоретической точки зрения симуляции на основе агентов связаны с отношением индивидуального поведения к макроскопическим закономерностям и с динамикой, в отличие от теории общего равновесия и теории игр. Метод настаивает на неоднородности агентов, ограниченной рациональности и несовершенном знании. В настоящее время экономика, основанная на агентах, пользуется все большей популярностью (Dawid, 2018; Zhang, 2018; Leitner, 2021).

Растущее значение агентного подхода для экономистов зафиксировано Дэвидом Коландером, который, сообщая о событиях на двух конференциях, проведенных в Институте Санта-Фе с разницей почти в десять лет, указывает на драматические изменения. На первой, состоявшейся в середине 80-х, «экономисты в основном пытались защитить свой аксиоматический подход, столкнувшись с острыми проблемами и насмешками со стороны физиков за то, что они придерживались относительно упрощенных взглядов» (Colander, 2003, р. 8). На второй, состоявшемся в середине 90-х, «мейнстримные экономисты больше не придерживались ортодоксальности на концепцию всеобщего равновесия. Теперь они использовали инновационные методы, заимствованные у биологов и физиков, многие из которых были предложены на ранней конференции» (Ibid).

Почему симуляции побеждают в современной экономике?

Нелинейные модели

В классических экономических теориях, все модели сводятся к линейным системам. Например, вальрасианское представление рыночного механизма: все агенты идентичны по средствам (совершенная рациональность, полная информированность) и целям (максимизация одной и той же цели), а поведение такого рынка - это просто суммирование действий лиц.

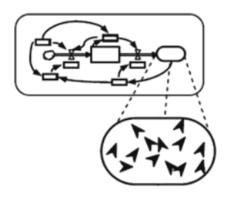
С точки зрения моделирования поведение линейных систем полностью понятно. Они могут демонстрировать несколько типичных независимых движений, и их поведение во всех областях пространства состояний пропорционально их поведению в небольшой окрестности

начала координат. Это приводит к предсказуемости и довольно доступной математической трактовке. Сталкивая с критикой редукционизма таких моделей, экономисты часто отвечают, что не существует естественной методологии для повышения точности этих допущений о людях.

Агент-ориентированное моделирование может создавать агентов и правила их взаимодействия в пространстве и времени по отдельности, без принятия какого-либо априорного общего правила динамики. В знаменитом искусственном мире Sugarscape (Epstein and Axtell, 1996) агенты не являются классическими: они живут ограниченным числом жизней и по-разному оценивают выгоду, получаемую от торговли. Новые агенты выходят на рынок как потомки существующего населения, и операции обмена происходят по неравновесным ценам. Это приводит к большему разбросу цен, что, в свою очередь, порождает горизонтальное неравенство и, прежде всего, не возникает ничего, что напоминало бы равновесие. Этот результат показывает, что альтернативные представления агентов нетривиальны для определения общего поведения системы, а также подчеркивает, как симуляция может использоваться в качестве теоретического инструмента для моделирования тех аспектов, которые не включены в традиционные математические представления классических экономистов.

Эволюция

Еще один пример касается эндогенных изменений и эволюции. В симуляции могут использоваться адаптивные агенты. Действию адаптивного агента можно присвоить значение, и он ведет себя так, чтобы со временем увеличивать это значение. Адаптация может происходить на микроуровне (например, с помощью алгоритмов обучения) или на макроуровне через дифференцированное выживание и воспроизводство наиболее успешных агентов.


В любом случае, последствия очень трудно предвидеть, когда существует множество агентов, которые взаимодействуют между собой без ограничений сверху вниз. Среди этих последствий может быть изменение в таксономии, вызванное относительным успехом (отбором) некоторых агентов, которые лучше приспособлены к окружающей среде. Изменение может заключаться в характеристиках агентов или во внешней среде. Адаптация и отбор ведут к эволюции и, опять же, к результатам, отличным от традиционной экономики. В то время как в экономике распространено мнение (Alchian, 1950; Friedman, 1953), эволюция должна приводить к постоянно улучшающимся формам адаптации. Симуляции способствовали тому, чтобы показать, что развивающаяся система не всегда достигает оптимальности и часто оказывается заблокированной на неэффективных формах адаптации.

равновесия и, что более интересно, помогли исследовать возможные миры при различных гипотезах адаптации (Chattoe and Gilbert, 1997).

Гибридная симуляция экономики России

Предлагается разработать гибридную симуляцию макроэкономических процессов макрорегиона на примере Российской Федерации. Технически в основании симуляции закладываются два метода: системная динамика и агент-ориентированное моделирование. В качестве агентов представлены домашние хозяйства, индивидуальные предприниматели, предприятия малого и среднего бизнеса, государственные организации. Симуляция представляет собой несколько уровней масштабирования и параметрами с эмерджентным поведением. То есть, агент-ориентированная модель (АОМ) строится как часть модели системной динамики (СД). Выходные данные АОМ влияют на параметры модели СД. Совокупный показатель АОМ используется для влияния на параметр в модели СД. Обмен информацией между моделями СД и АОМ может быть двунаправленным. Схема симуляции изображена на Рис. 1.

Рис. 1. Схема гибридной симуляции (параметры с эмерджентным поведением)

Источник: Swinerd, McNaught, 2012

Источники данных для гибриднойсимуляции

- 1) ФИАС, ОКАТО, ОКТМО
- 2) Открытые данные Министерства финансов РФ https://minfin.gov.ru/opendata/
- 3) Статистика от Министерства финансов РФ https://minfin.gov.ru/ru/statistics/
- 4) Открытые данные Росказначейства https://roskazna.gov.ru/opendata/
- 5) Открытые данные Росстата https://rosstat.gov.ru/opendata/

Список литературы

Alchain, A.A. (1950). Uncertainty, Evolution and Economic Theory // *Journal of Political Economy*, 58, 211-222.

Chattoe, E., Gilbert, N. (1997). A Simulation of Adaptation Mechanisms in Budgetary Decision Making // CONTE et al., 401-418.

- **Colander, D.** (2003). The Complexity Revolution and the Future of Economics // *Middlebury College Discussion Paper* No. 03/19.
- **Dawid, H., Pyka, A.** (2018). Introduction: Special Issue on Evolutionary Dynamics and Agent-Based Modeling in Economics // *Comput Econ* 52, 707–710.
- **Epstein, J.M., Axtell, R.** (1996). Growing Artificial Societies: Social Science from the Bottom Up, Cambridge, MA: MIT Press.
 - Friedman, M. (1953). Essays in Positive Economics, Chicago: University of Chicago Press.
- **Leitner, S., Wall, F.** (2021). Decision-facilitating information in hidden-action setups: an agent-based approach // *J Econ Interact Coord* 16, 323–358.
- **Swinerd, C., McNaught, K.R.** (2012). Design classes for hybrid simulations involving agent-based and system dynamics models // *Simul. Model. Pract. Theory* 25, 118–133.
- **Zhang, W.B.** (2018). Economics with heterogeneous interacting agents: a practical guide to agent-based modeling // *J Econ Interact Coord* 13, 197–200.