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In this paper, we describe the realization of each homotopy class of type T2

by a Morse-Smale di�eomorphism with an orientable heteroclinic set. Such
di�eomorphisms have relatively simple dynamics, since, by virtue of the re-
sults of A.N. Bezdezhnykh and V.Z. Grines, have only a �nite number of
heteroclinic orbits. Moreover, we prove that the type of the homotopy class
of any Morse-Smale di�eomorphism with a �nite number of heteroclinic or-
bits is uniquely determined by the index of its heteroclinic intersection.

Let Sg,k, g ≥ 0, k ≥ 0 � be a connected compact orientable surface of
genus g with the boundary consisting of k connected components. We set
Sg,0 = Sg. Everywhere below, surface mappings are assumed to preserve
orientation.

A homeomorphism h : Sg,k → Sg,k is called a periodic homeomorphism if
there exists m ∈ N, such that hm = id, where id � is the identity transfor-
mation. The smallest of these numbers m is called the period of the periodic
homeomorphism.

A homeomorphism h : Sg → Sg, g ≥ 1 is called a reducible by system C
of disjoint simple closed curves Ci, i = 1, . . . , l, non-homotopic to zero and
pairwise not homotopic to each other if the system of curves C is invariant
under h.

A reducible nonperiodic homeomorphism h : Sg → Sg, g ≥ 1 is called
a homeomorphism of algebraically �nite type, f there exists an h-invariant
neighborhood C of curves of the set C, which consists of the union two-
dimensional anulus and such that for each connected component Sgj ,kj , j =
1, . . . , n of the set Sg \ intC there is a number mj ∈ N such that hmj |Sgj ,kj

:

Sgj ,kj → Sgj ,kj � is a periodic homeomorphism.
Recall that a di�eomorphism f : Sg → Sg is called a Morse-Smale di�eo-

morphism if

1) the non-wandering set Ωf consists of a �nite number of hyperbolic
orbits;

2) the invariant manifolds W s
p , W

u
q intersect transversally for any non-

wandering points p, q.
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Denote byMS(Sg) the set of Morse-Smale di�eomorphisms. In the set of
periodic orbits of any di�eomorphism f ∈MS(Sg) one can introduce a total
order relation, which is a continuation of the partial order introduced by S.
Smale [6]. Precisely, let Oi,Oj � be the periodic orbits of the Morse-Smale
di�eomorphism f . They say that the orbits Oi,Oj are in the relation ≺
(Oi ≺ Oj), if

W s
Oi
∩W u

Oj
6= ∅.

A sequence of di�erent periodic orbits Oi = Oi0 ,Oi1 , ...,Oik = Oj (k > 1),
such that Oi0 ≺ Oi1 ≺ . . . ≺ Oik is called a chain of length k, connecting
periodic orbits Oi and Oj. The chain connecting the periodic orbits of saddle
points will be called saddle chain. Since the non-wandering set is �nite, for
any di�eomorphism f ∈ MS(Mn) there is a well-de�ned number equal to
the length of the maximal saddle chain, which is denoted by

beh(f).

Let σi, σj � be saddle points of the di�eomorphism f such that W s
σi
∩

W u
σj
6= ∅. Recall that the intersection W s

σi
∩W u

σj
is a countable set and each

point of this set is called heteroclinic point, and each orbit of a heteroclinic
point is called a heteroclinic orbit. For any heteroclinic point x ∈ W s

σi
∩W u

σj

For any heteroclinic point (~υux , ~υ
s
x), where:

� ~υux � the tangent vector to the unstable manifold of the point σj at the
point x;

� ~υsx � the tangent vector to the stable manifold of the point σi at the
point x.

Following [1](or see for example [2, p. 7]), we call a heteroclinic intersection
of the di�eomorphism f orientable, if the ordered pairs of vectors (~υux , ~υ

s
x) set

the same orientation of the bearing surface Sg. Otherwise, the heteroclinic
intersection is called non-orientable.

Two homeomorphisms h, h′ : Sg → Sg are called homotopic, if there
exists a continuous mapping H : Sg × [0, 1]→ Sg such that H(x, 0) = h(x) ?
H(x, 1) = h′(x). By [h] we denote the homotopy class of the homeomorphism
h.

Theorem 1. In every homotopy class [h] of the homeomorphism h : Sg →
Sg, g ≥ 1 of algebraically �nite type, there exists a Morse-Smale di�eomor-

phism f : Sg → Sg with orientable heteroclinic intersection.
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In [4], it was announced and then proved in [3] that any di�eomorphism
f ∈MS(Sg) with orientable heteroclinic intersections has beh(f) = 1 . This
fact was also proved in the work [5] using the factorization method.

Let f : Sg → Sg be an orientation-preserving Morse-Smale di�eomor-
phism such that beh(f) ≤ 1 (that is, the di�eomorphism f has a �nite number
of heteroclinic orbits). Let us denote by MS1(Sg) the set of such di�eomor-
phisms. By virtue of [7], the dynamics of any di�eomorphism f ∈ MS1(Sg)
can be represented as follows.

The set Ωf of periodic orbits of the maps f can be divided into subsets
Ωi
f , i ∈ {ω, s, u, α} as follows:

* Ωω
f � the set of all sink orbits;

* Ωs
f � s the set of saddle orbits whose unstable manifolds do not contain

heteroclinic points;

* Ωu
f � the set of the remaining saddle orbits of the system;

* Ωα
f � the set of source orbits.

Let

Af = Ωω
f ∪W u

Ωs
f
, Rf = Ωα

f ∪W s
Ωu

f
, Vf = Sg \ (Af ∪Rf ).

By construction, all heteroclinic points of the di�eomorphism f belong to the
set Vf , which consists of a �nite number of connected components Vi, i =
1, . . . ,m. Each component Vi is homeomorphic to an open two-dimensional
ring and is invariant with respect to some power qi ∈ N of the di�eomorphism
f . Each heteroclinic orbit Ox ⊂ Vi of the di�eomorphism f qi is assigned the
index ξOx , equal to +1(−1), if the orientation of the carrier the surface (not)
coincides with the orientation de�ned by the pair of vectors (~υux , ~υ

s
x). Since

the di�eomorphism f preserves orientation, the index ξOx does not depend
on the choice of a point in the orbit Ox. We set

ξi =
∑
Ox⊂Vi

ξOx , ξf =
m∑
i=1

|ξi|

and we will call the number ξf the index of the heteroclinic intersection of
the di�eomorphism f ∈MS1(Sg).
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It follows directly from the de�nition that the heteroclinic intersection
index is a non-negative number. The next result shows that it uniquely
determines the type of the homotopy class [f ] of the di�eomorphism f ∈
MS1(Sg).

Theorem 2. Let f ∈ MS1(Sg). Then [f ] is of type T1, if ξf = 0 and [f ] is
of type T2, if ξf > 0.
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