Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.

  • A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

«Нам нужно учиться общаться с сервисами искусственного интеллекта»

«Нам нужно учиться общаться с сервисами искусственного интеллекта»

© iStock

На платформе «Открытое образование» стартовал онлайн-курс «Что такое генеративный ИИ?», который поможет слушателям узнать больше о том, как правильно общаться с нейросетями, чтобы они лучше выполняли задачи. Как работает генеративный ИИ и как с его помощью создавать любой контент, рассказала эксперт Центра непрерывного образования, старший преподаватель департамента больших данных и информационного поиска ФКН Дарья Касьяненко.

Дарья Касьяненко

— Что такое генеративный искусственный интеллект?

— Генеративные модели (GenAI) — это тип искусственного интеллекта, который создает текст, код, изображения, музыку и другой контент в ответ на подсказки (промпты).

Такие модели обучаются на больших объемах данных, наблюдая и сопоставляя закономерности. Например, если мы покажем модели миллионы картинок светофора, то постепенно она начнет понимать, что светофор — это прямоугольная коробочка с красной, желтой и зеленой лампочками.

В основном генеративный ИИ используется для создания контента. Школьники пишут сочинения, маркетологи составляют планы продвижения — вариантов много. Но вместе с тем наши представления об искусственном интеллекте сильно искажены популярной культурой. Нам кажется, что он в лучшем случае решит все наши проблемы, а в худшем — поработит нас. Ни того ни другого в ближайшее время не случится.

Больше о работе с нейросетями и применении искусственного интеллекта — на портале

Существующие модели не заменят вас на работе (к сожалению или к счастью), но могут стать личным помощником в рутинных делах: например, написать за вас имейл, вычитать текст, проанализировать табличные данные, обобщить большие тексты или видео.

— Как генерируются тексты? Почему ИИ может, например, выдавать ложные факты?

— Тексты создаются с помощью языковых моделей. Они обучаются на больших объемах текстов, могут улавливать нюансы языка. Система получает задание (промпт), обрабатывает его и возвращает ответ. Эту модель можно представить в виде этакого мудреца, который прочитал все книги в мире и может по памяти воспроизвести ответ на любой вопрос.

Однако у моделей есть так называемые галлюцинации — именно из-за них случаются ошибки. Например, вы попросите модель написать сочинение про великого писателя Нейрона Нейроновича Нейронова. Модель с удовольствием расскажет вам, какой гениальный это писатель, и даже составит список его книг. Так происходит, когда у ИИ не хватает знаний по теме, и он, как студент, который не готовился к экзамену, начинает врать. Такое может происходить и из-за случайных сбоев в системе.

— Как генерируются картинки? Почему иногда у изображений есть артефакты?

— Картинки генерируются из шума (пустого изображения). Постепенно модель улучшает его по подсказке (промпту), пока не получится изображение, похожее на то, что просил сделать пользователь.

Обычно у сгенерированных картинок есть проблемы с отрисовкой людей: лишние руки-ноги, полная симметрия лица (эффект зловещей долины), разные глаза, странные улыбки и так далее. Чем больше деталей в изображении, тем хуже модель будет справляться с задачей.

Самое простое решение — просить модель рисовать человека в таких позах, где не видны руки и ноги, или просить нарисовать портрет.

— Какова роль человека в управлении ИИ, если говорить об обычном пользователе?

— Сейчас нам нужно учиться общаться с сервисами генеративного ИИ. Может показаться, что задавать вопрос в чате и получать ответы достаточно просто. Но чтобы получить действительно качественный ответ, нужно учиться промпт-инжинирингу, то есть искусству правильно составлять вопросы для машины. Существует даже целая профессия — промпт-инженер.

Сейчас можно найти огромное количество учебников по промптам, где научат правильно составлять запросы в форматах суммаризации, позиционных форматах, с описанием контекста, с описанием инструкций. Это целая наука.

На курсе мы как раз рассказываем и о том, как пользоваться промптами, и учимся глубже понимать их работу.

Вам также может быть интересно:

ИИ в образовании: как преодолеть соблазн готовых решений

Искусственный интеллект уже стал обыденностью для молодежи: как показал опрос, около 87% студентов ведущих вузов используют ИИ в процессе обучения. Большая часть из них отметила, что он помогает им экономить время, при этом они проверяют сделанную ИИ работу. Результаты исследования были представлены на конференции по анализу данных и технологиям ИИ Data Fusion. В ее работе приняли участие научный руководитель НИУ ВШЭ Ярослав Кузьминов и другие эксперты Вышки.

Большинство студентов не верят, что ИИ сможет заменить их на работе

Большинство студентов считают, что ИИ не сможет заменить их на работе в ближайшие десять лет. Низким такой риск называют 27,2% респондентов, 41,5% — крайне маловероятным. Эти оценки были получены НИУ ВШЭ в ходе опроса 4200 студентов в 2025 году. Они приводятся в докладе «Эпоха больших языковых моделей: почему они все еще не профессионалы», подготовленном научным руководителем НИУ ВШЭ Ярославом Кузьминовым и старшим преподавателем кафедры высшей математики НИУ ВШЭ Екатериной Кручинской. Доклад был представлен на XXV Ясинской (Апрельской) международной научной конференции по проблемам развития экономики и общества, которая проходит с 15 по 18 апреля в НИУ ВШЭ.

Точный ИИ-оракул: какие тренды интересуют бизнес

Современные технологии ежедневно меняют мир, автоматизируя бизнес-процессы в различных отраслях. Специалисты НИУ ВШЭ представили масштабный опыт команды iFORA по реализации ИИ-проектов в интересах крупных компаний и органов власти.

Перспективы ИИ: математика машинного обучения в фокусе

Институт искусственного интеллекта и цифровых наук ФКН НИУ ВШЭ провел выездной воркшоп «Математика машинного обучения». Здесь собрались ведущие ученые и специалисты НИУ ВШЭ в области машинного обучения, математики и статистики. В центре внимания исследователей оказались математические аспекты, лежащие в основе современных и наиболее перспективных направлений машинного обучения. Программа воркшопа включала мини-курсы, практические работы, доклады и круглый стол, посвященный перспективам развития ИИ в России.

Внедрение искусственного интеллекта в организации: какие эффекты отмечают сотрудники

45% организаций, которые занимались внедрением ИИ в работу, заявили о повышении производительности труда в результате его использования. Об этом говорится в исследовании «Внедрение ИИ в работу организаций: чем обусловлена вариация эффектов на труд?». Исследование проведено директором Центра статистики труда и заработной платы ИСИЭЗ НИУ ВШЭ Анной Демьяновой и стажером-исследователем центра Дарьей Талакаускас. Оно было презентовано на XXV Ясинской (Апрельской) международной научной конференции по проблемам развития экономики и общества (XXV ЯМНК), проходящей в НИУ ВШЭ с 15 по 18 апреля.

«Идею всегда задает человек»: что дает ИИ образованию и медиа

ИИ-технологии меняют принципы работы образования и медиаиндустрии. Большинство студентов уже в той или иной мере используют ИИ, а нейросети уже массово производят все виды контента. Возможности и вызовы эксперты обсудили на конференции «Образование и медиа в эпоху цифровых перемен», организованной Дирекцией по маркетинговым коммуникациям НИУ ВШЭ и «Яндекс Образованием».

В Вышке стартовали открытые семинары «ИИ в индустрии»

Институт искусственного интеллекта и цифровых наук факультета компьютерных наук НИУ ВШЭ запустил цикл открытых семинаров. Встречи посвящены актуальным вопросам внедрения искусственного интеллекта в различные отрасли экономики. Семинары проводятся еженедельно в 18:00 в кампусе на Покровском бульваре. Для участников также предусмотрена онлайн-трансляция.

Ученые представили новый метод для работы с несбалансированными данными

Специалисты факультета компьютерных наук НИУ ВШЭ и Лаборатории искусственного интеллекта Сбера разработали геометрический метод расширения данных — Simplicial SMOTE. Тесты на разных наборах данных показали, что он значительно улучшает качество работы AI. Метод особенно полезен в ситуациях, когда редкие случаи очень важны, например в борьбе с мошенничеством или при диагностике редких болезней. Результаты исследования доступны в открытом архиве Arxiv.org и будут представлены на Международной конференции по обнаружению знаний и анализу данных (KDD) летом 2025 года в Торонто.

В Вышке рассчитали экономический эффект от внедрения технологий ИИ в России

Институт статистических исследований и экономики знаний НИУ ВШЭ оценил потенциальный экономический эффект от внедрения и использования технологий искусственного интеллекта в отраслях российской экономики до 2035 года. Эксперты также предположили, каким должен быть объем ресурсов, которые потребуются организациям для освоения данного класса технологий.

Мегасайенс, ИИ и суперкомпьютеры: Вышка расширяет сотрудничество с ОИЯИ

Специалисты по компьютерным технологиям НИУ ВШЭ и Объединенного института ядерных исследований (ОИЯИ) обсудили сотрудничество и совместные проекты на встрече в Лаборатории информационных технологий им. М.Г. Мещерякова (ЛИТ). Со стороны ВШЭ в дискуссии участвовали заведующий Лабораторией вычислительной физики МИЭМ Лев Щур и сотрудники Научно-учебной лаборатории методов анализа больших данных факультета компьютерных наук Денис Деркач и Федор Ратников.