Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.

  • A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Искусственный интеллект предсказал поведение квантовых систем

Искусственный интеллект предсказал поведение квантовых систем

© iStock

Ученые ВШЭ совместно с коллегами из Университета Южной Калифорнии разработали алгоритм, который быстро и точно предсказывает поведение квантовых систем — от квантовых компьютеров до солнечных батарей. С его помощью удалось смоделировать процессы в полупроводнике MoS₂ и выяснить, что на движение заряженных частиц влияет не только количество дефектов, но и их расположение. Эти дефекты могут замедлять или ускорять перенос заряда, создавая эффекты, которые раньше было сложно учесть при применении стандартных методов. Исследование опубликовано в журнале The Proceedings of the National Academy of Sciences (PNAS).

Современная электроника работает благодаря квантовым эффектам. Полупроводники, светодиоды, солнечные батареи — все эти устройства зависят от того, как ведут себя электроны в материалах. Описать такие процессы с высокой точностью сложно: моделирование требует огромных вычислительных мощностей. Чтобы рассчитать движение электронов в материале из тысячи атомов, суперкомпьютерам приходится выполнять миллионы операций. 

Обычно при моделировании квантовых систем используют метод молекулярной динамики: он позволяет предсказывать, как атомы и электроны будут двигаться со временем. Однако если состояния электронов изменяются быстро, стандартные методы моделирования становятся слишком ресурсоемкими.

Исследователи МИЭМ ВШЭ решили проблему с помощью использования машинного обучения. Новый алгоритм анализирует небольшие фрагменты материала, обучаясь на их локальных свойствах, а затем строит предсказания о поведении всей системы. Ученые изучили двумерный полупроводник сульфид молибдена (MoS₂) — перспективный материал для оптоэлектроники и фотовольтаики. В частности, он может служить рабочим слоем солнечных элементов. В идеальном случае атомы молибдена (Mo) и серы (S) образуют упорядоченную решетку, но в реальных материалах структура редко бывает идеальной: в ней могут присутствовать дефекты. Дефекты — это нарушения в расположении атомов. В MoS₂ они могут проявляться как вакансии (отсутствие атомов серы или молибдена), лишние атомы между слоями, локальные смещения или другие отклонения от идеальной решетки. Дефекты меняют поведение электронов: в некоторых случаях ухудшают проводимость, но иногда могут придавать материалу новые свойства, например увеличивать его чувствительность к свету или делать его лучшим проводником заряда.

Лю Дунюй

«Чтобы понять, как дефекты влияют на движение электронов, мы сосредоточились на небольших фрагментах материала. Алгоритм сначала изучал локальные свойства системы, а затем предсказывал поведение всей структуры. Это как при изучении языка: сначала ты запоминаешь отдельные слова, а потом начинаешь понимать целые предложения», — комментирует доцент МИЭМ ВШЭ Лю Дунюй.

Оказалось, что важно не только количество дефектов, но и их расположение. Дефекты могут задерживать или ускорять движение заряженных частиц, создавая ловушки для носителей заряда внутри запрещенной зоны полупроводника. Стандартные методы плохо справляются с расчетом этих эффектов, так как при расчетах необходимо учитывать взаимодействие дефектов друг с другом и с атомами материала, что сложно сделать при использовании вычислительных ячеек малого размера. Машинное обучение позволяет преодолеть эти размерные ограничения и учесть синергетический эффект множественных дефектов в материале.

Андрей Васенко

«Важно, что этот метод не только ускоряет вычисления, но и помогает изучать реальные квантовые системы, — комментирует профессор МИЭМ НИУ ВШЭ Андрей Васенко. — Результаты наших исследований смогут сократить разрыв между теоретическим моделированием и экспериментальными исследованиями материалов.  Мы разработали новый подход к изучению движения зарядов в сложных системах, объединив точные вычисления, молекулярную динамику и машинное обучение. Этот метод поможет исследовать материалы, в которых электроны переносят энергию и информацию, что важно для электроники и энергетики».

Вам также может быть интересно:

В Вышке создали собственную MLOps-платформу

Ученые НИУ ВШЭ создали MLOps-платформу SmartMLOps. Она предназначена для исследователей в области искусственного интеллекта, которые хотели бы превратить свое изобретение в полноценный сервис. В будущем на платформе могут быть развернуты ИИ-помощники для упрощения образовательного процесса, оказания медицинской помощи, консультирования и решения многих других задач. Создатели ИИ-технологий смогут получить готовый к работе сервис в течение считанных часов. На суперкомпьютере Вышки этот сервис может быть запущен в несколько кликов.

«От нашей общей работы зависит будущее»: что несет человечеству развитие ИИ

Какие перспективы и вызовы для человечества несет развитие технологий искусственного интеллекта? Как его используют ученые? Каким будет мир, где доминирует ИИ? Эти и другие темы обсудили эксперты на форсайт-сессии «Будущее исследований в сфере искусственного интеллекта», которая прошла в НИУ ВШЭ.

ИИ позволит точно моделировать производительность систем хранения данных

Исследователи факультета компьютерных наук НИУ ВШЭ разработали новый подход к моделированию систем хранения данных на основе генеративных моделей машинного обучения. Он позволяет с высокой точностью предсказывать ключевые характеристики работы таких систем при различных условиях. Результаты опубликованы в журнале IEEE Access.

ИИ в образовании: как преодолеть соблазн готовых решений

Искусственный интеллект уже стал обыденностью для молодежи: как показал опрос, около 87% студентов ведущих вузов используют ИИ в процессе обучения. Большая часть из них отметила, что он помогает им экономить время, при этом они проверяют сделанную ИИ работу. Результаты исследования были представлены на конференции по анализу данных и технологиям ИИ Data Fusion. В ее работе приняли участие научный руководитель НИУ ВШЭ Ярослав Кузьминов и другие эксперты Вышки.

Большинство студентов не верят, что ИИ сможет заменить их на работе

Большинство студентов считают, что ИИ не сможет заменить их на работе в ближайшие десять лет. Низким такой риск называют 27,2% респондентов, 41,5% — крайне маловероятным. Эти оценки были получены НИУ ВШЭ в ходе опроса 4200 студентов в 2025 году. Они приводятся в докладе «Эпоха больших языковых моделей: почему они все еще не профессионалы», подготовленном научным руководителем НИУ ВШЭ Ярославом Кузьминовым и старшим преподавателем кафедры высшей математики НИУ ВШЭ Екатериной Кручинской. Доклад был представлен на XXV Ясинской (Апрельской) международной научной конференции по проблемам развития экономики и общества, которая проходит с 15 по 18 апреля в НИУ ВШЭ.

Точный ИИ-оракул: какие тренды интересуют бизнес

Современные технологии ежедневно меняют мир, автоматизируя бизнес-процессы в различных отраслях. Специалисты НИУ ВШЭ представили масштабный опыт команды iFORA по реализации ИИ-проектов в интересах крупных компаний и органов власти.

Перспективы ИИ: математика машинного обучения в фокусе

Институт искусственного интеллекта и цифровых наук ФКН НИУ ВШЭ провел выездной воркшоп «Математика машинного обучения». Здесь собрались ведущие ученые и специалисты НИУ ВШЭ в области машинного обучения, математики и статистики. В центре внимания исследователей оказались математические аспекты, лежащие в основе современных и наиболее перспективных направлений машинного обучения. Программа воркшопа включала мини-курсы, практические работы, доклады и круглый стол, посвященный перспективам развития ИИ в России.

Внедрение искусственного интеллекта в организации: какие эффекты отмечают сотрудники

45% организаций, которые занимались внедрением ИИ в работу, заявили о повышении производительности труда в результате его использования. Об этом говорится в исследовании «Внедрение ИИ в работу организаций: чем обусловлена вариация эффектов на труд?». Исследование проведено директором Центра статистики труда и заработной платы ИСИЭЗ НИУ ВШЭ Анной Демьяновой и стажером-исследователем центра Дарьей Талакаускас. Оно было презентовано на XXV Ясинской (Апрельской) международной научной конференции по проблемам развития экономики и общества (XXV ЯМНК), проходящей в НИУ ВШЭ с 15 по 18 апреля.

«Идею всегда задает человек»: что дает ИИ образованию и медиа

ИИ-технологии меняют принципы работы образования и медиаиндустрии. Большинство студентов уже в той или иной мере используют ИИ, а нейросети уже массово производят все виды контента. Возможности и вызовы эксперты обсудили на конференции «Образование и медиа в эпоху цифровых перемен», организованной Дирекцией по маркетинговым коммуникациям НИУ ВШЭ и «Яндекс Образованием».

В Вышке стартовали открытые семинары «ИИ в индустрии»

Институт искусственного интеллекта и цифровых наук факультета компьютерных наук НИУ ВШЭ запустил цикл открытых семинаров. Встречи посвящены актуальным вопросам внедрения искусственного интеллекта в различные отрасли экономики. Семинары проводятся еженедельно в 18:00 в кампусе на Покровском бульваре. Для участников также предусмотрена онлайн-трансляция.